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Lecture 18 Highlights 
Phys 402 

 
WKB Approximation 

We now go back to one-dimensional quantum mechanics and investigate some very 
useful approximation schemes.  Note that the Schrödinger equation for the hydrogen atom 
reduces, in part, to a one-dimensional Schrödinger problem for the radial coordinate, so 
these approximation schemes can also work for aspects of 3D problems. 

First consider the approximation due to Wentzel, Kramers and Brillouin, known as 
the WKB approximation.  This approximation works in the “semi-classical limit” of 
quantum mechanics.  The lowest lying states of a quantum problem are said to be in the 
extreme quantum limit.  Look at the eigenfunctions for the 1D harmonic oscillator on the 
top of page 53 of Griffiths, for example (or similar wavefunctions here).  The wave nature 
of the solution is crucial for understanding the properties of such states.  On the other hand 
we know that classical mechanics should be recovered if we consider solutions to the 
Schrödinger equation at very high quantum number (“𝑛𝑛 → ∞”).  In this limit the deBroglie 
wavelength of the particle is so small that it plays essentially no role in the dynamics of the 
particle or wave packet.  In between these two extremes we have the semi-classical limit, 
where both the wave nature and the high quantum number are of roughly equal 
significance.  The harmonic oscillator wavefunction shown on the bottom of page 53 of 
Griffiths is a good example of a semi-classical wavefunction.  It has both quantum and 
classical character, as we shall see.  In other fields of physics very similar approximations 
are made, but given different names: Eikonal approximation (quantum scattering theory in 
the semi-classical limit) and paraxial approximation (wave optics in the short wavelength 
limit). 

The WKB approximation is basically good for two things: 1) estimating eigen-
energies in the semi-classical limit for complicated 1D potentials 𝑉𝑉(𝑥𝑥), and 2) estimating 
tunneling rates in the semi-classical limit through complicated barriers.  Here we look at 
eigen-energies in the 1D semi-classical limit, and we examine the tunneling case in the 
next lecture. 

The lecture followed the book (Griffiths, pages 354-357) quite closely.  The basic 
idea is that in the semi-classical limit we can construct solutions to the 1D Schrödinger 
equation which are basically modulated traveling waves, in which the amplitude and phase 
vary on the scale of the variation of the potential: 
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where it is assumed that the wavelength of the particle )(/2 xkπ (treating 𝜙𝜙(𝑥𝑥) = 𝑘𝑘(𝑥𝑥)𝑥𝑥) 
is much smaller than the length scale on which the potential )(xV is changing.  With this 
ansatz (which is exact at this point), the Schrödinger equation reduces to two real equations 
for the two unknown functions; 
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where 22 /'' dxAdA = , etc., ( ))(2 xVEmpclass −= is the classical momentum of the 
particle, and it is assumed that the amplitude 0≠A .  The WKB approximation basically 
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consists of ignoring the second derivative term in the first equation because the amplitude 
is expected to vary slowly if the above constraint on the length scale of variation of )(xV
is satisfied.  With this, the solutions to the Schrödinger equation become; 
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where D is a complex constant and 'x is a dummy coordinate variable.  Note that the 
probability density varies inversely with the classical momentum: 
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Hence the probability density should peak at the classical turning points (i.e. the points 
classx  where ExV class =)( ).  This is indeed the case with the semi-classical wavefunction 

shown on the bottom of page 53 in Griffiths, and not the case for the extreme quantum 
wavefunctions on the top of page 53. 
 As an example of computing eigen-energies, consider a 1D infinite square well with 
an arbitrary potential 𝑉𝑉(𝑥𝑥) ≠ 0 on the bottom, going from 0=x to ax = .  We can solve 
for the eigen-energies in the semi-classical limit (assuming 𝐸𝐸 > 𝑉𝑉(𝑥𝑥) everywhere in the 
well) where the wavelength of the particle is small compared to the spatial variation length 
scale of )(xV .  The solutions are of the form; 
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positive integer.  The value of n should start at the eigen-number that first enters the semi-
classical limit, coming up the ladder of states from the quantum limit (in other words, 𝑛𝑛 ≫
1).  This value will depend on the problem, of course.   For a given potential )(xV on the 
bottom of the well, we now have a numerical problem to solve for the eigenenergies ( nE ) 

in the semiclassical limit: ( ) ndxxVEm
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the numbers should not be taken literally but are meant to represent that the eigenenergy 
estimate must be done in the semi-classical limit (𝑛𝑛 ≫ 1). 
 As a specific example, consider the flat infinite square well in which 𝑉𝑉(𝑥𝑥) = 0, and

mEpclass 2= .  The integral is easy to do, and one gets the exact result for the 
eigenenergies of the infinite square well: 
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but the potential varies on an infinite length scale, so perhaps the WKB approximation can 
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be justified down to small quantum numbers.  This situation is a bit artificial because of 
the infinite square well boundary conditions. 

The case of the harmonic oscillator potential is more challenging.  In this case one 
has a potential )(xV that varies with position.  In addition there are classical turning points 
where the WKB approximation formally breaks down because 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 goes to zero there, 
rendering the WKB 𝜓𝜓(𝑥𝑥) undefined.  We must deal with this next. 
 
Fixing WKB at the Classical Turning Points 

The WKB approximation method is essentially for a “free” particle that is travelling 
over a slowly-varying “bumpy” potential 𝑉𝑉(𝑥𝑥).  The approximate wavefunction is of the 
form 
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spatially-varying classical momentum of the particle.  In an infinite square well potential 
between 𝑥𝑥 = 0 and 𝑥𝑥 = 𝑎𝑎 this gives rise to a quantization condition that allows one to find 
the eigen-energies in the semi-classical limit: 
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where the numbers should not be taken literally, but represent the idea that the 
approximation works only in the semi-classical limit (𝑛𝑛 ≫ 1). 

This is fine for infinite square wells, but there is a problem when the potential varies 
slowly near the classical turning point, such as the harmonic oscillator.  At the classical 
turning points the WKB approximation formally breaks down because 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 goes to zero 
there, rendering the WKB 𝜓𝜓(𝑥𝑥) undefined.  We sketched a solution to this problem by 
solving the Schrodinger equation near the classical turning point by linearizing the 
potential there, and then matching it to the WKB solutions further away from the classical 
turning point.  This led to a slightly revised quantization condition that applies to potentials 
with “ordinary” classical turning points (like the harmonic oscillator): 
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where the integral is taken between the two classical turning points 𝑥𝑥1 and 𝑥𝑥2. 
Applying this to the harmonic oscillator potential with 𝑉𝑉(𝑥𝑥) = 𝑚𝑚𝜔𝜔2𝑥𝑥2

2
 with total 

energy 𝐸𝐸 = 𝑚𝑚𝜔𝜔2𝐴𝐴2

2
 (classical amplitude of oscillation 𝐴𝐴), yields the following quantization 

condition: 𝐸𝐸 = ℏ𝜔𝜔 �𝑛𝑛 − 1
2
�, with 𝑛𝑛 = 51, 52, 53, …  Re-defining 𝑛𝑛, this can be written in a 

more familiar form: 𝐸𝐸 = ℏ𝜔𝜔 �𝑛𝑛 + 1
2
�, with 𝑛𝑛 = 50, 51, 52, 53, …   Surprisingly, this works 

all the way down to 𝑛𝑛 = 0. 
The bottom line is that the eigen-energies of complex 1D potentials can be 

estimated without solving the Schrodinger equation directly, or solving for the 
eigenfunctions, at least in the semi-classical limit. 
 


